- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
You, Shuai (3)
-
Zhu, Kai (3)
-
Berry, Joseph J (2)
-
Guo, Peijun (2)
-
Bakr, Osman M (1)
-
Barlow, Stephen (1)
-
Beard, Matthew C (1)
-
Berry, Joseph J. (1)
-
Casareto, Marco (1)
-
Chakraborty, Dwaipayan (1)
-
Chen, Lei (1)
-
Chen, Min (1)
-
Dai, Zhenghong (1)
-
Dong, Yifan (1)
-
Dou, Benjia Dak (1)
-
Duan, Tianwei (1)
-
Freitag, Marina (1)
-
Li, Shunran (1)
-
Li, Yanyan (1)
-
Lorenz, Adam (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Although C60is usually the electron transport layer (ETL) in inverted perovskite solar cells, its molecular nature of C60leads to weak interfaces that lead to non-ideal interfacial electronic and mechanical degradation. Here, we synthesized an ionic salt from C60, 4-(1',5′-dihydro-1'-methyl-2'H-[5,6] fullereno-C60-Ih-[1,9-c]pyrrol-2'-yl) phenylmethanaminium chloride (CPMAC), and used it as the electron shuttle in inverted PSCs. The CH2-NH3+head group in the CPMA cation improved the ETL interface and the ionic nature enhanced the packing, leading to ~3-fold increase in the interfacial toughness compared to C60. Using CPMAC, we obtained ~26% power conversion efficiencies (PCEs) with ~2% degradation after 2,100 hours of 1-sun operation at 65°C. For minimodules (four subcells, 6 centimeters square), we achieved the PCE of ~23% with <9% degradation after 2,200 hours of operation at 55°C.more » « less
-
Duan, Tianwei; You, Shuai; Chen, Min; Yu, Wenjian; Li, Yanyan; Guo, Peijun; Berry, Joseph J; Luther, Joseph M; Zhu, Kai; Zhou, Yuanyuan (, Science)Mechanical failure and chemical degradation of device heterointerfaces can strongly influence the long-term stability of perovskite solar cells (PSCs) under thermal cycling and damp heat conditions. We report chirality-mediated interfaces based onR-/S-methylbenzyl-ammonium between the perovskite absorber and electron-transport layer to create an elastic yet strong heterointerface with increased mechanical reliability. This interface harnesses enantiomer-controlled entropy to enhance tolerance to thermal cycling–induced fatigue and material degradation, and a heterochiral arrangement of organic cations leads to closer packing of benzene rings, which enhances chemical stability and charge transfer. The encapsulated PSCs showed retentions of 92% of power-conversion efficiency under a thermal cycling test (−40°C to 85°C; 200 cycles over 1200 hours) and 92% under a damp heat test (85% relative humidity; 85°C; 600 hours).more » « less
-
Dai, Zhenghong; You, Shuai; Chakraborty, Dwaipayan; Li, Shunran; Zhang, Yadong; Ranka, Anush; Barlow, Stephen; Berry, Joseph J.; Marder, Seth R.; Guo, Peijun; et al (, ACS Energy Letters)
An official website of the United States government
